SMART-CAZ/AVI: algorithm to guide pharmaceutical clinical reasoning in managing the rational use of ceftazidime/avibactam in adult patients

Authors

DOI:

https://doi.org/10.30968/jhphs.2025.164.1286

Abstract

Objectives: Develop and evaluate the application of SMART-CAZ/AVI, an algorithm designed to guide the clinical pharmacist’s role in managing the use of ceftazidime/avibactam (CAZ/AVI). The algorithm supports pharmaceutical monitoring as a clinical decision-support tool, facilitating the identification of opportunities to optimize antibiotic therapy and ensuring the rational use of CAZ/AVI. Methods: The Stewardship & Monitoring Algorithm for Rational Therapy (SMART) model was developed based on antimicrobial stewardship principles and divided into three sections: Initial Pharmaceutical Assessment, Microbiology, and Time-Out. SMART-CAZ/AVI refers to the application of the SMART model to the pharmaceutical assessment of CAZ/AVI in adult patients. Each section contains specific questions and guidelines to direct the clinical pharmacist’s role in ensuring effective and safe antibiotic therapy. The analysis of the algorithm’s application was conducted retrospectively and descriptively, using data collected before and after the implementation of SMART-CAZ/AVI in a private hospital in Rio de Janeiro, from January 2023 to September 2024. The data were divided into three 7-month periods: pre-implementation, immediate post-implementation, and late post-implementation. Results: A total of 93 Time-Outs and 23 pharmaceutical interventions were recorded, with overdosing based on creatinine clearance (ClCr) being the most frequent issue (68.4%). The analysis between the immediate and late post-implementation periods revealed a 55.2% reduction in overdose interventions and the elimination of administration scheduling errors; however, prolonged antibiotic therapy increased by 300%. The percentage of treatments without formal indication increased by 108.33%, and the analysis of the mean days of therapy (DOT) showed an initial reduction of 64.15% in the immediate period, followed by a late increase of 242.11%. Conclusion: SMART-CAZ/AVI has the potential to become an essential tool to support clinical pharmacists in managing CAZ/AVI use, identifying key issues in antimicrobial therapy. Its implementation directly contributed to reducing overdose and administration errors. SMART-CAZ/AVI may be established as a standardized tool to streamline pharmaceutical monitoring in hospitals, ensuring effective and safe antibiotic therapy.

Downloads

Download data is not yet available.

References

1. Shirley M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs. 2018;78(6):675-692. doi:10.1007/s40265-018-0902-x

2. Hobson CA, Pierrat G, Tenaillon O, et al. Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: an Evolutionary Overview. Antimicrob Agents Chemother. 2022;66(9):e0044722. doi:10.1128/aac.00447-22

3. Lagacé-Wiens P, Walkty A, Karlowsky JA. Ceftazidimeavibactam: an evidence-based review of its pharmacology and potential use in the treatment of Gram-negative bacterial infections. Core Evid. 2014;9:13-25. doi:10.2147/CE.S40698

4. Aktaş Z, Kayacan C, Oncul O. In vitro activity of avibactam (NXL104) in combination with β-lactams against Gramnegative bacteria, including OXA-48 β-lactamaseproducing Klebsiella pneumoniae. Int J Antimicrob Agents. 2012;39(1):86-89. doi:10.1016/j.ijantimicag.2011.09.012

5. Gaibani P, Giani T, Bovo F, et al. Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics (Basel). 2022;11(5):628. doi:10.3390/antibiotics11050628

6. Chaïbi K, Jaureguy F, Do Rego H, et al. What to Do with the New Antibiotics?. Antibiotics (Basel). 2023;12(4):654. doi:10.3390/antibiotics12040654

7. Garau J, Bassetti M. Role of pharmacists in antimicrobial stewardship programmes. Int J Clin Pharm. 2018;40(5):948-952. doi:10.1007/s11096-018-0675-z

8. Dighriri IM, Alnomci BA, Aljahdali MM, et al. The Role of Clinical Pharmacists in Antimicrobial Stewardship Programs (ASPs): A Systematic Review. Cureus. 2023;15(12):e50151. doi:10.7759/cureus.50151

9. Parente DM, Morton J. Role of the Pharmacist in Antimicrobial Stewardship. Med Clin North Am. 2018;102(5):929-936. doi:10.1016/j.mcna.2018.05.009

10. Lee SS, Schwemm AK, Reist J, et al. Pharmacists’ and pharmacy students’ ability to identify drug-related problems using TIMER (Tool to Improve Medications in the Elderly via Review). Am J Pharm Educ. 2009;73(3):52. doi:10.5688/aj730352

11. CDC. Core Elements of Hospital Antibiotic Stewardship Programs. Atlanta: GA- US Department of Health and Human Services, CDC. 2019.

12. Joint Commission International. Joint Commission International Accreditation Standards for Hospital. 8th ed. Joint Comission Resources; 2025.

13. Paulson CM, Handley JF, Dilworth TJ, et al. Impact of a Systematic Pharmacist-Initiated Antibiotic Time-Out Intervention for Hospitalized Adults. J Pharm Pract. 2022;35(3):388-395. doi:10.1177/0897190020980616

14. Hasegawa S, Tagashira Y, Murakami S, et al. Antimicrobial Time-Out for Vancomycin by Infectious Disease Physicians Versus Clinical Pharmacists: A Before-After Crossover Trial. Open Forum Infect Dis. 2021;8(6):ofab125. doi:10.1093/ofid/ofab125

15. Dennstädt F, Treffers T, Iseli T, Panje C, Putora PM. Creation of clinical algorithms for decision-making in oncology: an example with dose prescription in radiation oncology. BMC Med Inform Decis Mak. 2021;21(1):212. doi:10.1186/s12911-021-01568-w

16. Lee TC, Frenette C, Jayaraman D, Green L, Pilote L. Antibiotic self-stewardship: trainee-led structured antibiotic time-outs to improve antimicrobial use. Ann Intern Med. 2014;161(10 Suppl):S53-S58. doi:10.7326/M13-3016

17. Taylor AP, Coe K, Stevenson K, Wardlow L, Boghdadly ZE, Reed E. Clinical Impact of an Antibiotic Time Out Initiative at an Academic Medical Center. Hosp Pharm. 2021;56(4):343-346. doi:10.1177/0018578719901274

18. Adams SM, Ngo L, Morphew T, Babbitt CJ. Does an Antimicrobial Time-Out Impact the Duration of Therapy of Antimicrobials in the PICU?. Pediatr Crit Care Med. 2019;20(6):560-567. doi:10.1097/PCC.0000000000001925

19. Stang CRT, Jaggi P, Tansmore J, et al. Implementation of a Pharmacist-Led Antimicrobial Time-Out for Medical-Surgery Services in an Academic Pediatric Hospital. J Pediatr Pharmacol Ther. 2021;26(3):284-290. doi:10.5863/1551-6776-26.3.284

20. Muller MR, Mahadeo AM, Mayne JP, et al. Decreased Antibiotic Exposure for Suspected Early-Onset Sepsis in the Neonatal Intensive Care Unit Through Implementation of an Antimicrobial Time-out. J Pediatr Pharmacol Ther. 2022;27(8):746-749. doi:10.5863/1551-6776-27.8.746

21. Richardson SR, Neuner EA, Athans V, et al. Evaluation of an electronic antimicrobial time-out on antimicrobial utilization at a large health system. Infect Control Hosp Epidemiol. 2019;40(7):807-809. doi:10.1017/ice.2019.105

22. Schooneveld TC Van, Rupp ME, Lyden E, Cavalieri RJ, Marolf C, Rolek K. Randomized Trial of Team Pharmacist-Led Antimicrobial Time Out. Open Forum Infect Dis. 2016;3(suppl1). doi:10.1093/ofid/ofw172.1490

23. Patel AR, Murrey TF. 68. Impact of a Pharmacy-Driven Antimicrobial Time-out on Duration of Therapy in Community-Acquired Pneumonia. Open Forum Infect Dis. 2020;7(Suppl 1):S53. doi:10.1093/ofid/ofaa439.113

24. Graber CJ, Jones MM, Glassman PA, et al. Taking an Antibiotic Time-out: Utilization and Usability of a Self-Stewardship Time-out Program for Renewal of Vancomycin and Piperacillin-Tazobactam. Hosp Pharm. 2015;50(11):1011-1024. doi:10.1310/hpj5011-1011

25. Ricieri MC, Barreto HAG, Pasquini-Netto H, et al. Prat tool: A harmonization of antimicrobial stewardship program interventions. Rev Ciencias Farm Basica e Apl. 2021;(42):e735. doi:10.4322/2179-443X.0735

26. Ding L, Shen S, Chen J, et al. Klebsiella pneumoniae carbapenemase variants: the new threat to global public health. Clin Microbiol Rev. 2023;36(4):e0000823. doi:10.1128/cmr.00008-23

27. Li J, Lovern M, Green ML, et al. Ceftazidime-Avibactam Population Pharmacokinetic Modeling and Pharmacodynamic Target Attainment Across Adult Indications and Patient Subgroups. Clin Transl Sci. 2019;12(2):151-163. doi:10.1111/cts.12585

28. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41. doi:10.1159/000180580

29. Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30(2):239-245. doi:10.1038/clpt.1981.154

30. Yahav D, Giske CG, Gramatniece A, Abodakpi H, Tam VH, Leibovici L. Erratum for Yahav et al., “New β-Lactam-β-Lactamase Inhibitor Combinations”. Clin Microbiol Rev. 2021;34(2):e00021-21. doi:10.1128/CMR.00021-21

31. Bradley N, Lee Y. Practical Implications of New Antibiotic Agents for the Treatment of Carbapenem-Resistant Enterobacteriaceae. Microbiol Insights. 2019;12:1178636119840367. doi:10.1177/1178636119840367

32. Timsit JF, Wicky PH, de Montmollin E. Treatment of Severe Infections Due to Metallo-Betalactamases Enterobacterales in Critically Ill Patients. Antibiotics (Basel). 2022;11(2):144. doi:10.3390/antibiotics11020144

33. Falcone M, Daikos GL, Tiseo G, et al. Efficacy of Ceftazidimeavibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-β-lactamase-Producing Enterobacterales. Clin Infect Dis. 2021;72(11):1871-1878. doi:10.1093/cid/ciaa586

34. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin Infect Dis. 2023. doi:10.1093/cid/ciad428

35. Pereira JG, Fernandes J, Duarte AR, Fernandes SM. β-Lactam Dosing in Critical Patients: A Narrative Review of Optimal Efficacy and the Prevention of Resistance and Toxicity. Antibiotics (Basel). 2022;11(12):1839. doi:10.3390/antibiotics11121839

36. Diarra A, Pascal L, Carpentier B, et al. Successful use of avibactam and aztreonam combination for a multiresistant Stenotrophomonas maltophilia bloodstream infection in a patient with idiopathic medullary aplasia. Infect Dis Now. 2021;51(7):637-638. doi:10.1016/j.idnow.2021.01.014

37. Goncette V, Layios N, Descy J, Frippiat F. Continuous infusion, therapeutic drug monitoring and outpatient parenteral antimicrobial therapy with ceftazidime/avibactam: a retrospective cohort study. J Glob Antimicrob Resist. 2021;26:15-19. doi:10.1016/j.jgar.2021.04.015

38. Fresan D, Luque S, Benítez-Cano A, et al. Pharmacokinetics/pharmacodynamics and therapeutic drug monitoring of ceftazidime/avibactam administered by continuous infusion in patients with MDR Gram-negative bacterial infections. J Antimicrob Chemother. 2023;78(3):678-683. doi:10.1093/jac/dkac439

39. Hassan Z, Ali I, Ullah AR, et al. Assessment of Medication Dosage Adjustment in Hospitalized Patients With Chronic Kidney Disease. Cureus. 2021;13(2):e13449. doi:10.7759/cureus.13449

40. Al-Dorzi HM, Eissa AT, Khan RM, Harbi SAA, Aldabbagh T, Arabi YM. Dosing errors of empirical antibiotics in critically ill patients with severe sepsis or septic shock: A prospective observational study. Int J Health Sci (Qassim). 2019;13(4):48-55.

41. Langford BJ, Nisenbaum R, Brown KA, Chan A, Downing M. Antibiotics: easier to start than to stop? Predictors of antimicrobial stewardship recommendation acceptance. Clin Microbiol Infect. 2020;26(12):1638-1643. doi:10.1016/j.cmi.2020.07.048

42. Yoo JS, Park JY, Chun HJ, et al. Impact of prolonged carbapenem use-focused antimicrobial stewardship on antimicrobial consumption and factors affecting acceptance of recommendations: a quasi-experimental study. Sci Rep. 2023;13(1):14501. doi:10.1038/s41598-023-41710-4

43. Delfino C, Da Silva R, Júnior MS. Estratégias para uso adequado de antibioticoterapia em unidade de terapia intensiva. Einstein. 2015;13(3):448–453. doi: 10.1590/S1679-45082015RW3145

44. Kollef MH, Shorr AF, Bassetti M, et al. Timing of antibiotic therapy in the ICU. Crit Care. 2021;25(1):360. doi:10.1186/s13054-021-03787-z

45. Busch LM, Kadri SS. Antimicrobial treatment duration in sepsis and serious infections. J Infect Dis. 2020;222(Suppl 2):S142–S155. doi:10.1093/INFDIS/JIAA247

Downloads

Additional Files

Published

2025-11-09

How to Cite

1.
GIANOTI R, BARRETO ES, RIBEIRO FF, NICOLINI P, BERANGER R, SOFKA DC, et al. SMART-CAZ/AVI: algorithm to guide pharmaceutical clinical reasoning in managing the rational use of ceftazidime/avibactam in adult patients. J Hosp Pharm Health Serv [Internet]. 2025 Nov. 9 [cited 2025 Nov. 30];16(4):e1286. Available from: https://jhphs.org/sbrafh/article/view/1286

Issue

Section

ORIGINAL ARTICLES

Most read articles by the same author(s)