Identification and evaluation of potential undesirable drug interactions involving oral antineoplastics in patients at a university hospital
DOI:
https://doi.org/10.30968/jhphs.2026.171.1238Abstract
Objective: to characterize the clinical profile of patients and the pharmacological profile of undesirable drug interactions in cancer patients with outpatient follow-up. Methods: cross-sectional, descriptive and quantitative study carried out in the oncology outpatient clinic of a university hospital. Data were collected from the medical records of 232 patients records on sex, age, pharmacotherapy, diagnosis of neoplasia and other comorbidities. Drug interactions, as well as clinical severity, pharmacological mechanisms, and possible clinical effects were identified and evaluated by the Drug Interactions Checker Software. Results: Thirty-one types of undesirable interactions were identified in 23.3% of the medical records of patients whose mean age was 65.5 years, with 59.0% of patients classified as polypharmacy. It was found that 16.0% were of major severity, 81.0% moderate and 3.0% minor. The most common involved: bicalutamide and simvastatin (20.6%), capecitabine and hydrochlorothiazide (14.2%), duloxetine and tamoxifen (7.9%). The pharmacokinetic mechanism was responsible for 35.4% and the pharmacodynamic mechanism, for 45.2% of the interactions. The main clinical effects observed were: prolongation of the cardiac QT interval (41.9%) and reduction of the efficacy of the antineoplastic agent (32.2%). The main comorbidities include: hypertension (63.8%), diabetes (29.7%) and dyslipidemia (18.5%). Conclusion: the identified drug interactions are clinically relevant with regard to their potential effects. However, there is a low frequency of interactions, partly due to the limited sample of medical records with data on medications in use duly recorded.
Downloads
References
1. World Health Organization. Medication without harm: policy brief. Geneva: WHO; 2023.
2. Kim SH, Suh Y, Ah YM, et al. Real-world prevalence of potential drug-drug interactions involving oral antineoplastic agents: a population-based study. Support Care Cancer. 2020;28(8):3617-3626. doi:10.1007/s00520-019-05204-2
3. Mousavi S, Ghanbari G. Potential drug-drug interactions among hospitalized patients in a developing country. Caspian J Intern Med. 2017;8(4):282-288. doi:10.22088/cjim.8.4.282
4. World Health Organization. Reporting and learning systems for medication errors: the role of pharmacovigilance centres. Geneva: WHO; 2014.
5. Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer. 2006;6(7):546-558. doi:10.1038/nrc1887
6. Katzung B. G. e Vanderah, T. W. Farmacologia Básica e Clínica. Porto Alegre: AMGH, 2022.
7. Leal KD, Leopoldino RW, Martins RR, et al. Potential intravenous drug incompatibilities in a pediatric unit. Einstein. 2016;14(2):185-189. doi:10.1590/S1679-45082016AO3723
8. Rezende LFM, Lee DH, Louzada MLDC, et al. Proportion of cancer cases and deaths attributable to lifestyle risk factors in Brazil. Cancer Epidemiol. 2019;59:148-157. doi:10.1016/j.canep.2019.01.021
9 Hansten PD. The Underrated Risks of Tamoxifen Drug Interactions. Eur J Drug Metab Pharmacokinet. 2018;43(5):495-508. doi:10.1007/s13318-018-0475-9
10. Sanchez-Spitman AB, Swen JJ, Dezentje VO, et al. Clinical pharmacokinetics and pharmacogenetics of tamoxifen and endoxifen. Expert Rev Clin Pharmacol. 2019;12(6):523-536. doi:10.1080/17512433.2019.1610390
11. Irarrázaval O ME, Gaete G L. Elección del mejor antidepresivo en pacientes con cáncer de mama en tratamiento con tamoxifeno: revisión de la evidencia básica y clínica. Rev Med Chil. 2016;144(10):1326-1335. doi:10.4067/S0034-98872016001000013
12. Van Leeuwen RWF, le Comte M, Reyners AKL, et al. Evidence- and consensusbased guidelines for drug-drug interactions with anticancer drugs; A practical and universal tool for management. Semin Oncol. 2022;49(2):119-129. doi:10.1053/j.seminoncol.2022.03.002
13. Haque R, Shi J, Schottinger JE, et al. Tamoxifen and Antidepressant Drug Interaction in a Cohort of 16,887 Breast Cancer Survivors. J Natl Cancer Inst. 2015;108(3):djv337. doi:10.1093/jnci/djv337
14. Priori SG, Blomström-Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36(41):2793-2867. doi:10.1093/eurheartj/ehv316
15. Khatib R, Sabir FRN, Omari C, et al. Managing druginduced QT prolongation in clinical practice. Postgrad Med J. 2021;97(1149):452-458. doi:10.1136/postgradmedj-2020-138661
16. Armahizer MJ, Seybert AL, Smithburger PL, et al. Drug-drug interactions contributing to QT prolongation in cardiac intensive care units. J Crit Care. 2013;28(3):243-249. doi:10.1016/j.jcrc.2012.10.014
17. Hussaarts KGAM, Berger FA, Binkhorst L, et al. The Risk of QTc-Interval Prolongation in Breast Cancer Patients Treated with Tamoxifen in Combination with Serotonin Reuptake Inhibitors. Pharm Res. 2019;37(1):7. doi:10.1007/s11095-019-2746-9
18. Gagliano-Jucá T, Travison TG, Kantoff PW, et al. Androgen Deprivation Therapy Is Associated With Prolongation of QTc Interval in Men With Prostate Cancer. J Endocr Soc. 2018;2(5):485-496. doi:10.1210/js.2018-00039
19. Salem JE, Alexandre J, Bachelot A, et al. Influence of steroid hormones on ventricular repolarization. Pharmacol Ther. 2016;167:38-47. doi:10.1016/j.pharmthera.2016.07.005
20. Grouthier V, Lebrun-Vignes B, Glazer AM, et al. Increased long QT and torsade de pointes reporting on tamoxifen compared with aromatase inhibitors. Heart. 2018;104(22):1859-1863. doi:10.1136/heartjnl-2017-312934
21. Schwartz PJ, Woosley RL. Predicting the Unpredictable: Drug-Induced QT Prolongation and Torsades de Pointes. J Am Coll Cardiol. 2016;67(13):1639-1650. doi:10.1016/j.jacc.2015.12.063
22. Scott IA, Hilmer SN, Reeve E, et al. Reducing inappropriate polypharmacy: the process of deprescribing. JAMA Intern Med. 2015;175(5):827-834. doi:10.1001/jamainternmed.2015.0324
23. Ramsdale E, Mohamed M, Yu V, et al. Polypharmacy, Potentially Inappropriate Medications, and Drug-Drug Interactions in Vulnerable Older Adults With Advanced Cancer Initiating Cancer Treatment. Oncologist. 2022;27(7):e580-e588. doi:10.1093/oncolo/oyac053
24. Hussain S, Haidar A, Bloom RE, et al. Bicalutamide-induced hepatotoxicity: A rare adverse effect. Am J Case Rep. 2014;15:266-270. doi:10.12659/AJCR.890679
25. Karahalil B, Hare E, Koç G, et al. Hepatotoxicity associated with statins. Arh Hig Rada Toksikol. 2017;68(4):254-260. doi:10.1515/aiht-2017-68-2994
26. Averbukh LD, Turshudzhyan A, Wu DC, et al. Statin-induced Liver Injury Patterns: A Clinical Review. J Clin Transl Hepatol. 2022;10(3):543-552. doi:10.14218/JCTH.2021.00271
27. Cockshott ID. Bicalutamide: clinical pharmacokinetics and metabolism. Clin Pharmacokinet. 2004;43(13):855-878. doi:10.2165/00003088-200443130-00003
28. Brewer JR, Morrison G, Dolan ME, et al. Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecol Oncol. 2016;140(1):176-183. doi:10.1016/j.ygyno.2015.11.011
29. Gaist D, Jeppesen U, Andersen M, et al. Statins and risk of polyneuropathy: a case-control study. Neurology. 2002;58(9):1333-1337. doi:10.1212/wnl.58.9.1333
30. Sun J, Ilich AI, Kim CA, et al. Concomitant Administration of Proton Pump Inhibitors and Capecitabine is Associated With Increased Recurrence Risk in Early Stage Colorectal Cancer Patients. Clin Colorectal Cancer. 2016;15(3):257-263. doi:10.1016/j.clcc.2015.12.008
31. Rhinehart HE, Phillips MA, Wade N, et al. Evaluation of the clinical impact of concomitant acid suppression therapy in colorectal cancer patients treated with capecitabine monotherapy. J Oncol Pharm Pract. 2019;25(8):1839-1845. doi:10.1177/1078155218818237
32. Wong GG, Ha V, Chu MP, et al. Effects of Proton Pump Inhibitors on FOLFOX and CapeOx Regimens in Colorectal Cancer. Clin Colorectal Cancer. 2019;18(1):72-79. doi:10.1016/j.clcc.2018.11.001
33. Kim SY, Lee JS, Kang J, et al. Proton Pump Inhibitor Use and the Efficacy of Chemotherapy in Metastatic Colorectal Cancer: A Post Hoc Analysis of a Randomized Phase III Trial (AXEPT). Oncologist. 2021;26(6):e954-e962. doi:10.1002/onco.13735
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors hereby transfer, assign, or otherwise convey to JHPHS : (1) the right to grant permission to republish or reprint the stated material, in whole or in part, without a fee; (2) the right to print republish copies for free distribution or sale; and (3) the right to republish the stated material in any format (electronic or printed). In addition, the undersigned affirms that the article described above has not previously been published, in whole or part, is not subject to copyright or other rights except by the author(s), and has not been submitted for publication elsewhere, except as communicated in writing to JHPHS with this document.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Serlf-archiving policy
This journal permits and encourages authors to post and archive the final pdf of the articles submitted to the journal on personal websites or institutional repositories after publication, while providing bibliographic details that credit its publication in this journal.


